

Plus System

TO SUPPORT YOU, WE DESIGN AND PRODUCE

An industrialized process with various levels of customization

COLLABORATION

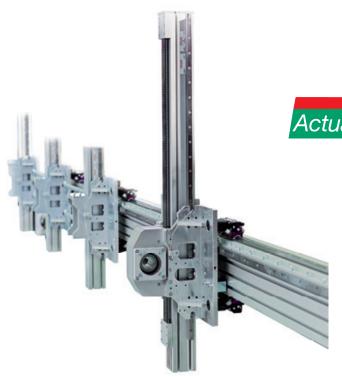
High-level technical consulting and cross-competence allow us to identify the needs of our clients and transform them into guidelines for continuous exchange, whileour strong specialization in the different industrial sectors becomes an factor in developing projects and innovative applications.

Rollon takes on the task of design and development of linear motion solutions, taking care of everything for our customers, so that they can concentrate on their core business. We offer everything from individual components to specifically designed, mechanically integrated systems: the quality of our applications is an expression of our technology and competence.

SOLUTIONS APPLICATIONS

DIVERSIFIED LINEAR SOLUTIONS FOR EVERY APPLICATION REQUIREMENT

Linear and telescopic rails



Linear actuators and automation systems

Actuator Line

Linear actuators with different rail configurations and transmissions, available with belt, screw, or rack and pinion drives for different needs in terms of precision and speed. Rails with bearings or ball recycle systems for different load capacities and critical environments.

Actuator System Line

Integrated actuators for industrial automation, used in applications in several industrial sectors: automated industrial machinery, precision assembly lines, packaging lines and high speed production lines. The Actuator Line evolves to satisfy the requests of our most discerning clients.

Content

Plus System

Technical features overview

1 ELM series

ELM series description	PLS-2
The components	PLS-3
The linear motion system, The new driving head	PLS-4
ELM 50	PLS-5
ELM 65	PLS-6
ELM 80	PLS-7
ELM 110	PLS-8
Lubrication	PLS-9
Simple shaft versiont	PLS-10
Hollow shafts	PLS-1
Linear units parallel, Accessories	PLS-12
Ordering key	PLS-1

2 ROBOT series

ROBOT series description	PLS-16
The components	PLS-17
The linear motion system, The new driving head	PLS-18
ROBOT 100	PLS-19
ROBOT 100 2C (Double independent carriage)	PLS-20
ROBOT 130	PLS-21
ROBOT 130 2C (Double independent carriage)	PLS-22
ROBOT 160	PLS-23
ROBOT 160 2C (Double independent carriage)	PLS-24
ROBOT 220	PLS-25
ROBOT 220 2C (Double independent carriage)	PLS-26
Lubrication	PLS-27
Simple shaft	PLS-28
Hollow shafts, Accessories	PLS-29
Ordering kev	PLS-34

Pre-selection overview

Application Priority	Driving system	Section
Max. speed from 4 to 15 [m/s] Max. acceleration from 10 to 50 [m/s²] Stroke up to 10 m	⊙rov⊑ovo⊙ ⊙anananao Belt	Square
		Rectangular
		Other section
High precision up to \pm 0,005 [mm]		Square
Stroke up to 3.5 m	Ball screw	Rectangular
Heavy loads up to 4.000 Kg Infinite stroke Multiple independent carriages	Rack and pinion	Rectangular
		Other section
	Pacad	Square
Vertical mounting Profile moving	Ω Belt	Rectangular

 $^{^{\}star}$ Optimal reliability in dirty environments thanks to plastic compound coated rollers

Protection			
	Product Fam	nily	Product
	Plus System	0	ELM
Protected	Modline		MCR/MCH with protection
	Eco System		ECO
Semi-protected	Modline		MCR/MCH
	Uniline System	To:	UNILINE
Open	Smart System	0.	E-SMART
Protected with suction	Clean Room System	1	ONE
Protected	Plus System	O	ROBOT
Onco	Smart System	10	R-SMART
Open	Modline	C	TCR/TCS
Open*	Speedy Rail A		SAB
			TV
	Precision System		TVS
Semi-protected	riedaluli ayalelli		π
		7. 50	TH
			PAS
Open	Tecline		PAR
		1	PAS
Open*	Speedy Rail A		SAR
Semi-protected	Smart System		S-SMART
Open	Modline		ZCH

Technical features overview

	Reference	Linear mot	ion system	Driving			Audioio	Ducksstien	
Pr	oduct Family	Product	Balls	Rollers	Toothed belt	Ball screw	Rack and pinion	Anticorrosion	Protection
Plus		ELM						• •	Protected
System	O	ROBOT						•	Protected
Clean Room System		ONE			Onnananano			•	Protected with suction
	0,	E-SMART			Onnananano				
Smart System	10	R-SMART			Onnananan				
	10/1	S-SMART			Lacad Opacal				Semi-protected
Eco System		ECO							Semi-protected
Uniline System	F	A/C/E/ED/H			Onnananano				Semi-protected
	10	MCR MCH						•	Semi-protected
Modline	Co	TCR TCS			Onnonnano			•	
		ZCH			land O hand			•	

Reported data must be verified according to the application.

* Longer stroke is available for jointed version

Size	Max. load capacity per carriage [N]			Max. static moment per carriage [Nm]		Max. speed	Max. acceleration	Repeatability accuracy	Max stroke (per system)	
0120	F _x	F _y	F _z	M _x	M _y	M _z	[m/s]	[m/s²]	[mm]	[mm]
50-65-80-110	4980	129400	129400	1392	11646	11646	5	50	± 0.05	6130*
100-130- 160-220	9545	258800	258800	22257	28986	28986	5	50	± 0.05	6100*
50-65-80-110	4980	104800	104800	1126	10532	10532	5	50	± 0.05	6000*
30-50-80-100	4980	189200	189200	2680	19204	19204	4	50	± 0.05	6145*
120-160-220	9960	283800	283800	24123	36894	36894	4	50	± 0.05	6050*
50-65-80	2523	55400	55400	700	4044	4044	4	50	± 0.05	2000
60-80-100	4565	55400	55400	700	5485	5485	5	50	± 0.05	6000*
40-55-75	19360	11000	17400	800,4	24917	18788	7	15	± 0.05	5700*
65-80-105	3984	55400	55400	700	5983	5983	5	50	± 0.1	10100*
140-170 200-220-230 280- 360	9960	266400	266400	42624	61272	61272	5	50	± 0.1	11480
60-90-100 170-220	7470	189200	189200	13665	38691	38691	4	25	± 0.1	2500

P L S

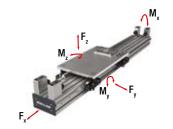
C R S

E S

U S

> M L

Technical features overview



Reference			Linear mot	Linear motion system		Driving		Anticorrosion	Protection
Product Family		Product	Balls	Rollers	Toothed belt	Ball screw	Rack and pinion	Anticorrosion	FroteGuon
	To fee	TH				<i>m</i> [<i>m</i>			Semi-protected
Precision		TT				<i>m</i> [] <i>m</i>			Semi-protected
System		TV				<i>m</i> [] <i>m</i>			Semi-protected
		TVS				<i>m</i> _ <i>m</i>		•	Semi-protected
Tecline		PAR PAS						•	
Speedy Rail A		SAB							
		SAR							

Reported data must be verified according to the application.

* Longer stroke is available for jointed version

Size	Max. load capacity per carriage [N]				Max. static moment per carriage [Nm]		Max. speed	Max. acceleration	Repeatability accuracy	Max stroke (per system)
5125	F _x	F _y	F _z	M _x	M _y	M _z	[m/s]	[m/s ²]	[mm]	[mm]
70-90-110-145	32600	153600	153600	6682	5053	5053	2		± 0,005	1500
100-155- 225-310	30500	230500	274500	30195	26625	22365	2,5		± 0,005	3000
60-80-110	11538	85000	85000	1080	2316	2316	2,5		± 0,01	3000
220	66300	258800	258800	19410	47360	47360	1	5	± 0,02	3500
90-100-140- 170-220-230- 280-360	10989	386400	386400	65688	159390	159390	3	6	± 0,05	10800*
60-120- 180-250	4980	5431	5431	558	597	644	15	10	± 0,2	7150
120-180-250	1905	7240	7240	744	1521	1521	3	10	± 0,15	7150*

Plus System

New Plus System

It simplifies the project, improves the perfomance and reduces the application cost: 8 main advantages.

- Avoid costs related to engineering, manufacturing and testing a self-made solution.
- Eliminate all potential risks related to reliability and lack of warranties with one trusted partner.
- Focus your efforts on your core business.

High protection for dirty environments

A dedicated polyurethane sealing strip ensures complete protection against dust, dirt and other contaminants.

Optional pressurization system further reduces the ingress of contaminants.

Side cover bands protect the grooves (2 supplied as standard).

Resistant to corrosion

Optional stainless steel elements for applications in corrosive environments and/or subject to frequent washdown.

High versatility

The new re-designed driving head allows for assembly of the gearbox on either the left or the right side of the actuator, by means of a standard assembly kit.

High load capacity

Highly engineered combination of recirculating ball guides and aluminum profile, extruded with elaborate geometries, allows for high stiffness and load capacity.

Low maintenance

Special lubrication tanks ensure continuous greasing of the ball raceways up to 5000 km.

High quality design ensures high dynamics with stressful duty cycles: speed up to 5 m/s, acceleration up to 50 m/s².

accuracy

Up to \pm 0.05 mm.

Ideal for multi-axes systems

A dedicated set of accessories allows easy assembly to achieve high performance X-Y-Z multiaxis systems.

ROBOT series is designed to be compatible and assembled without the need for adapter plates.

ELM series /

ELM series description

Fig. 1

ELM

This is Rollon's highly versatile, premier line of completely enclosed belt driven linear actuators.

The ELM series linear units are available in four sizes: 50 - 65 - 80-110 mm. They have a self-supporting structure with a robust profile of extruded and anodized aluminum. The thrust force is transmitted by a steel reinforced, polyurethane belt. The moving carriage is guided and supported by a linear guide system.

A polyurethane sealing strip ensures complete protection of the belt drive and linear guide system against dust, dirt and other contaminants. It avoids the fragility of other sealing systems such as stainless steel strips.

The components used for linear motion and accessories promote a "maintenance-free" system. The pulleys, bearings and drive shafts are among the most robust in the industry. The ELM is the best product for applications in very aggressive working environments that also require high speed duty cycles and position repeatability.

Corrosion resistant version

ELM linear actuators are available with stainless steel elements, for applications in harsh environments and/or subject to frequent washes.

They are constructed using extruded anodized 6060 and 6082 Anti-Corrosive Aluminum, which houses bearings, linear rails, nuts and bolts and components made of stainless steel preventing or delaying corrosion caused by humidity experienced in the environments where the linear units are used.

Special no-deposit surface treatments are combined with a food grade lubrication system to allow use in highly sensitive applications, such as the food and pharmaceutical industries where product contamination is prohibited.

- Internal stainless steel elements
- Anodized 6060 and 6082 Anti-Corrosive Aluminum Profile
- AISI 440 stainless steel linear rails
- Lubricated with organic food grade vegetable oils

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of ELM series linear units are designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. (see physical-chemical characteristics below). The dimensional tolerances comply with EN 755-9 standard.

Driving belt

ELM series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with a backlash-free pulley, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

Carriage

The carriage of the ELM series linear units are made of anodized aluminum. Each carriage has mounting holes fitted with stainless steel thread inserts. Rollon offers multiple carriages to accommodate a vast array of applications. The unique design of the carriage allows for the sealing strip to pass through it, as well as house brush seals to remove contaminates from the sealing strip.

Sealing strip

ELM series linear units are equipped with a polyurethane sealing strip to protect all of the internal components from dust, contaminates, and other foreign objects. The sealing strip runs the length of the body and is kept in position by micro-bearings located inside the carriage. This minimizes resistance as the strip passes through the carriage while providing maximum protection.

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.

ELM with ball bearing guides

- A ball bearing guide with high load capacity is mounted in a dedicated seat inside the body.
- The carriage is assembled on two pre-loaded ball bearing blocks.
- The two ball bearing blocks enable the carriage to withstand loading in the four main directions.
- The two blocks have seals on both sides and, if necessary, an additional scraper can be fitted for very dusty conditions.
- The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the right amount of grease, thus promoting long maintenance interval.

The linear motion system described above offers:

- High speed and acceleration
- High load capacity
- High permissible bending moments
- Low friction
- Long life
- Maintenance free (depending on applications)
- Low noise

ELM section

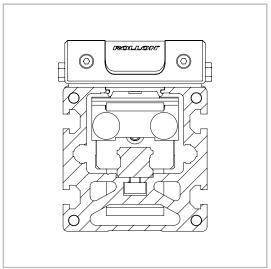
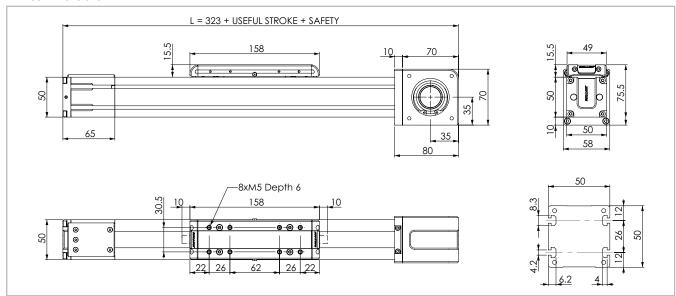


Fig. 2


The new driving head

The new driving head is designed to allow high freedom while sizing the application and mounting the gearbox on the ELM series linear actuators. With the new head, it is possible to assembly the gearbox on either the right or the left side of the actuator by means of a standard assembly kit.

The assembly kit includes: shrink disk; adapter plate and fixing hardware; and can be ordered with the actuator. Different kits are available to accomodate gearboxes from the major brands on the market. For more information see pag. PLS-14.

The same logic is valid when mounting the shaft to connect two units in narallel

ELM 50 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 3

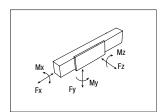
Technical data

	Туре
	ELM 50
Max. useful stroke length [mm]*1	6130
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s ²]	50
Type of belt	22 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	0.48
Zero travel weight [kg]	2.278
Weight for 100 mm useful stroke [kg]	0.416
Starting torque [Nm]	0.4
Moment of inertia of pulleys [g·mm²]	30228
Rail size [mm]	12 mini
*1) It is possible to obtain strokes up to 9000 mm by means of special Rollon joints	Tab. 1

^{*1)} It is possible to obtain strokes up to 9000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ELM 50	0.025	0.031	0.056
			Tab. 2

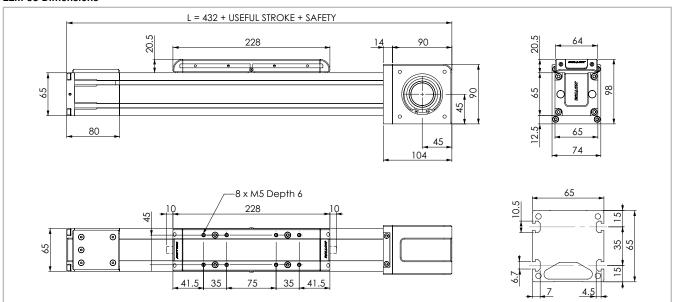

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	[kg/m]
ELM 50	22 AT 5	22	0.072

Tab. 3

Belt length (mm) = $2 \times L - 125$


Load capacity

Туре	F [1	: x V]	F [1	: NJ	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 50	809	508	7060	6350	7060	46.2	233	233

See verification under static load and lifetime on page SL-2 and SL-3

F, in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-14).

ELM 65 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

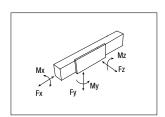
Fig. 4

Technical data

	Туре
	ELM 65
Max. useful stroke length [mm]*1	6060
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	32 AT 5
Type of pulley	Z 32
Pulley pitch diameter [mm]	50.93
Carriage displacement per pulley turn [mm]	160
Carriage weight [kg]	1.438
Zero travel weight [kg]	5.411
Weight for 100 mm useful stroke [kg]	0.589
Starting torque [Nm]	1.5
Moment of inertia of pulleys [g·mm²]	185496
Rail size [mm]	15
) It is possible to obtain strokes up to 11000 mm by means of special Rollon joints	Tab

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

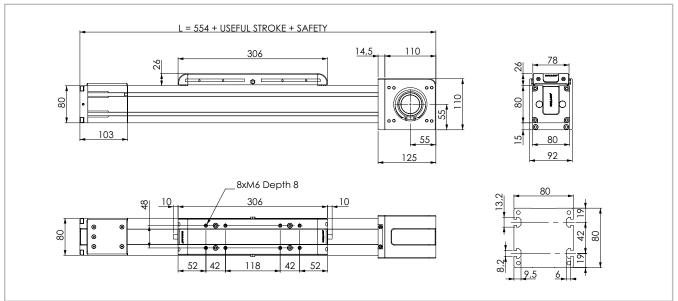

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
ELM 65	0.060	0.086	0.146
			Tab. 6

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ELM 65	32 AT 5	32	0.105
			Tab. 7

Belt length (mm) = $2 \times L - 175$



Load capacity

Туре	F [N	: X N]	F [l	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 65	1344	883	48400	22541	48400	320	1376	1376

See verification under static load and lifetime on page SL-2 and SL-3 F_x in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-14).

ELM 80 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 5

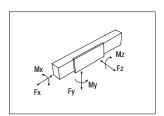
Technical data

	Туре
	ELM 80
Max. useful stroke length [mm]*1	5980
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	32 AT 10
Type of pulley	Z 19
Pulley pitch diameter [mm]	60.48
Carriage displacement per pulley turn [mm]	190
Carriage weight [kg]	3.12
Zero travel weight [kg]	10.761
Weight for 100 mm useful stroke [kg]	1.02
Starting torque [Nm]	2.2
Moment of inertia of pulleys [g·mm²]	400064
Rail size [mm]	20
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon joints	Tab. 9

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	 [10 ⁷ mm ⁴]
ELM 80	0.136	0.195	0.331
			Tab. 10

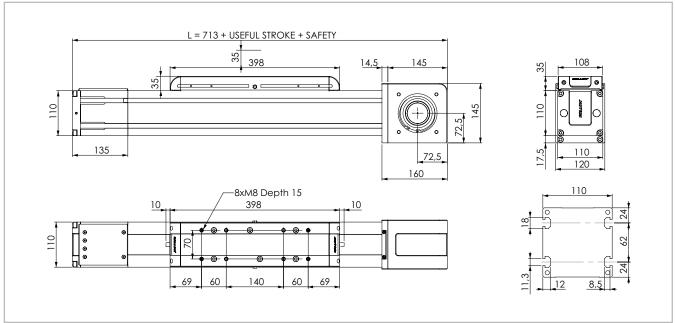

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	[kg/m]
ELM 80	32 AT 10	32	0.185

Tab. 11

Belt length (mm) = $2 \times L - 230$



Load capacity

Туре	F [1	: x V]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 80	2258	1306	76800	35399	76800	722	5606	5606

See verification under static load and lifetime on page SL-2 and SL-3 F_x in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-14).

ELM 110 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 6

Technical data

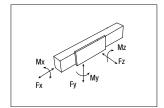
	Туре
	ELM 110
Max. useful stroke length [mm]*1	5900
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	50 AT 10
Type of pulley	Z 27
Pulley pitch diameter [mm]	85.94
Carriage displacement per pulley turn [mm]	270
Carriage weight [kg]	6.82
Zero travel weight [kg]	23.898
Weight for 100 mm useful stroke [kg]	1.443
Starting torque [Nm]	3.5
Moment of inertia of pulleys [g·mm²]	2.286·10 ⁶
Rail size [mm]	25
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon joints	Tab. 13

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints

Moments of inertia of the aluminum body

Туре	l _x	l _y	l _p
	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]	[10 ⁷ mm⁴]
ELM 110	0.446	0.609	1.054

Tab. 14


Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of	Belt width	Weight
	belt	[mm]	[kg/m]
ELM 110	50 AT 10	50	0.290

Tab. 15

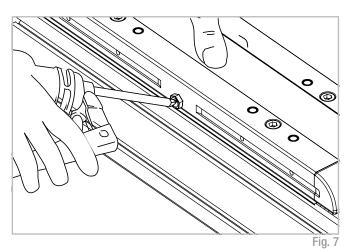
Belt length (mm) = $2 \times L - 280$

Load capacity

Туре	F F [N]		: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]	
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ELM 110	4980	3300	129400	58416	129400	1392	11646	11646

See verification under static load and lifetime on page SL-2 and SL-3

Tab. 16


^{*2)} Positioning repeatability is dependent on the type of transmission used

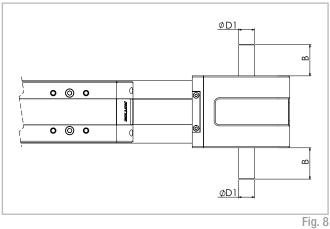
F_v in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-14).

Lubrication

ELM Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

Special lubrication reservoirs are mounted on the front plates of the linear blocks which continuously provide the necessary amount of grease to the ball raceways under load. These lubrication reservoirs also considerably reduce the frequency of lubrication of the module. This system guarantees a long interval between maintenances: every 5000 km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

Quantity of lubricant necessary for re-lubrication:


Туре	Unit: [cm³]
ELM 50	1
ELM 65	1.4
ELM 80	2.8
ELM 110	4.8

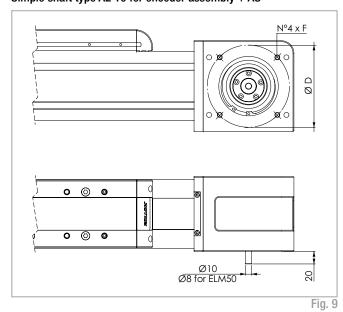
Tab. 17

- Insert the tip of the grease gun in the specific grease blocks.
- For lubrication of linear units use lithium soap grease NLGI 2.
- For specially stressed applications or difficult environmental conditions, lubrication should be carried out more frequently.
 Refer to Rollon for further advice.

Simple shaft version

Simple shaft type AS

Unit	Shaft type	В	D1
ELM 50	AS 12	25	12h7
ELM 65	AS 15	35	15h7
ELM 80	AS 20	40	20h7
ELM 110	AS 25	50	25h7

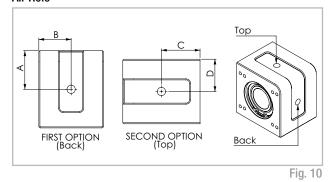

Tab. 18

Position of the simple shaft can be to the right, left, or both sides of the drive head.

Unit	Shaft type	В	D1	AS assembly kit code
ELM 50	AS 12	25	12h7	G002697
ELM 65	AS 15	35	15h7	G000851
ELM 80	AS 20	40	20h7	G002696
ELM 110	AS 25	50	25h7	G000649

Tab. 19

Simple shaft type AE 10 for encoder assembly + AS



Unit	Code kit AE	ØD	F
ELM 50	G002744	75	M5
ELM 65	G002592	96	M6
ELM 80	G002745	100	M6
ELM 110	G002370	130	M8

Tab. 20

Position of the simple shafts for encoder assembly to the right or to the left on the drive head.

Air Hole

Unit	Fi	rst	Second		
	Α	В	С	D	
ELM 50	35	29	35	29	
ELM 65	45	37	45	37	
	55	46	55	46	
ELM 80					
ELM 110	72.5	60	72.5	60	

Tab. 21

▶ Hollow shafts

Hollow shaft

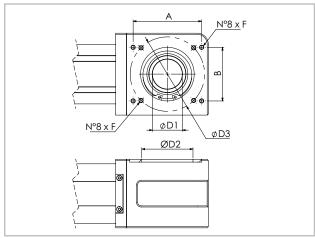
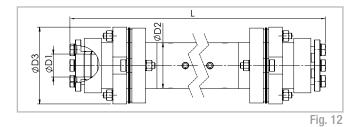


Fig. 11

Dimensions (mm)

Appliable to unit	Shaft type	D1	D2	D3	A	В	F
ELM 50	FP 26	26 H7	47	75	-	-	M5
ELM 65	FP 34	34 H7	62	96	-	-	M6
ELM 80	FP 41	41 H7	72	100	92	72	M6
ELM 110	FP 50	50 H7	95	130	108.9	108.9	M8

Linear units in parallel


Synchronization kit for use of ELM linear units in parallel

When movement consisting of two linear units in parallel is essential, a synchronization kit must be used. This consists of original Rollon lamina type precision joints complete with tapered splines and hollow aluminum drive shafts.

Moment of inertia [g·mm²] C1 + C2 · (X-Y)

	C1	C2	Υ	Weigh D1+D2	t [Kg] ! · (X-Y)
	[g·mm²]	[g·mm²]	[mm]	D1 [Kg]	D2 [Kg mm]
GK12P	61.456	69	166	0.308	0.00056
GK15P	906.928	464	210	2.28	0.00148
GK20P	1.014.968	464	250	2.48	0.00148
GK25P	5.525.250	4.708	356	6.24	0.0051

Tab. 23

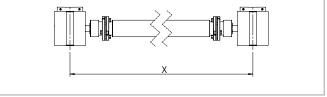
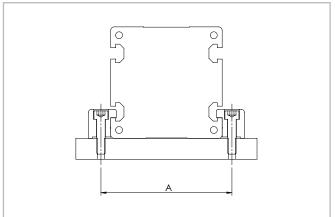


Fig. 13

Dimensions (mm)

Appliable to unit	Shaft type	D1	D2	D3	Code	Formula for length calculation
ELM 50	AP 12	12	25	45	GK12P1A	L= X-73mm
ELM 65	AP 15	15	40	69.5	GK15P1A	L= X-90mm
ELM 80	AP 20	20	40	69.5	GK20P1A	L= X-116mm
ELM 110	AP 25	25	70	99	GK25P1A	L= X-162mm

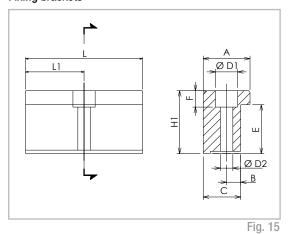

Tab. 24

Accessories

Fixing by brackets

The linear motion system used for the ELM series linear units enables them to support loads in any direction. They can therefore be installed in any position.

To install the units, we recommend the use of the dedicated T-slots in the extruded bodies as shown below.


Unit	A (mm)
ELM 50	62
ELM 65	77
ELM 80	94
ELM 110	130
	Tala OF

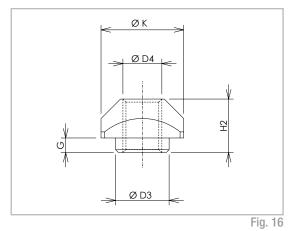
Tab. 25

Warning

Do not fix the linear units through the drive ends.

Fixing brackets

Dimensions (mm)


Unit	А	H1	В	С	Е	F	D1	D2	L	Ltt	Code
ELM 50	20	14	6	16	10	6	10	5.5	35	17.5	1000958
ELM 65	20	17.5	6	16	11.5	6	9.4	5.3	50	25	1001490
ELM 80	20	20.7	7	16	14.7	7	11	6.4	50	25	1001491
ELM 110	36.5	28.5	10	31	18.5	11.5	16.5	10.5	100	50	1001233

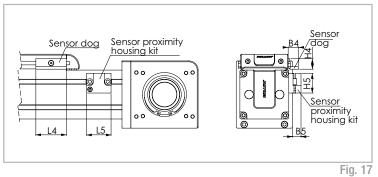
Tab. 26

Fixing bracket

Anodized aluminum block for fixing the linear units through the side T-slots of the body.

T-Nuts

Dimensions (mm)


Unit	D3	D4	G	H2	К	Code
ELM 50	-	M4	-	3.4	8	1001046
ELM 65	6.7	M5	2.3	6.5	10	1000627
ELM 80	8	M6	3.3	8.3	13	1000043
ELM 110	11	M8	2.8	10.8	17	1000932

Tab. 27

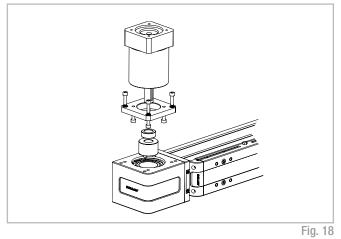
T-nuts

Steel nuts to be used in the T-slots of the body.

Proximity ELM

Sensor proximity housing kit

Red anodized aluminum sensor holder, equipped with T-nuts for fixing onto the profile.


Sensor dog

L-shaped bracket in zinc-plated iron, mounted on the carriage and used for proximity switch operations.

Dimensions (mm)

Unit	B4	B5	L4	L5	H4	Н5	For proximity	Sensor dog code	Sensor proximity housing kit code
ELM 50	9.5	14	25	29	11.9	22.5	Ø 8	G000268	G000211
ELM 65	17.2	20	50	40	17	32	Ø 12	G003574	G000212
ELM 80	17.2	20	50	40	17	32	Ø 12	G000267	G000209
ELM 110	17.2	20	50	40	17	32	Ø 12	G000267	G000210

Gearbox assembly kit

Codes on the table below refer to the gearbox assembly kit. The kit includes: shrink disk; adapter plate; fixing hardware.

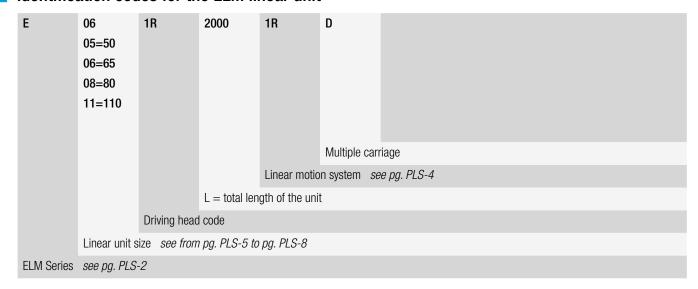
Single shrink disc

Fig. 19

Codes on the table below refer to a shink disc ordered as single element.

Unit type	Gearbox type (not included)	Kit Code
ELM 50	MP060	G000566
LLIVI 30	LC050; PE2; NP005S	G001444
	MP080	G000529
	MP060; PLE060	G000531
ELM 65	SW030	G000748
	PE3; NP015S; LC070	G000530
	P3	G001162
	P3	G000824
	MP080	G000826
	LC090; MPV01; NP025S; PE4	G000827
FI.M. 00	MP105	G000830
ELM 80	PE3; NP015S; LC070	G001078
	SP075; PLN090	G000859
	SP060; PLN070	G000829
	SW040	G000866
	MP130	G000482
	LC120; MPV02; NP035S; PE5; AE120	G000483
FI M 440	LC090; NP025S; PE4; NP025S	G000525
ELM 110	MP105	G000527
	SW050	G000717
	SP075; PLN090; P4; VRS075; AF075A	G000526

т	-	Ь	0	\cap
- 1	а	n	/	ч.
	u	w	-	\sim


Unit type	Hollow shaft [mm]	Shrink disc dxD [mm]	Transmittable torque* [Nm]	Shrink disc code
ELM 50	26	14x26	36	6005740
		14x34	64	6005737
ELM 65	34	16x34	73	6005738
		19x34	87	6005739
	41	19x41	150	6005734
ELM 80		22x41	174	6005735
		25x41	198	6005736
		22x50	286	6005730
ELM 110	50	25x50	324	6005731
		32x50	415	6005732

 $^{^\}star$ Transmittable torque in the table represents the maximum capacity of the shrink disk. Tab. 30 For the application, the limit of F $_{\!_{x}}$ must be considered too.

For other gearbox type ask Rollon

Ordering key / ~

Identification codes for the ELM linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

ROBOT series / v

ROBOT series description

ROBOT

ROBOT 2C - Double indepedent carriage

Fig. 21

Fig. 20

ROBOT

The ROBOT series is particularly well-suited for heavy load applications where significant carriage pitch, yaw or roll moments are applied. As a robust, high load choice, the ROBOT Series is the linear actuator for the most demanding applications.

Available in four sizes from 100 mm to 220 mm, the ROBOT series linear units have a rigid structure made by a heavy rectangular cross-section of extruded and anodized aluminum. The thrust force is transmitted by a steel reinforced polyurethane. The carriage is running on two parallel linear guides with four self-lubricated "maintenance-free" caged ball bearing blocks, positioned to support the carriage and all incident loads and moments. A polyurethane sealing strip ensures complete protection of the driving belt against dirt, chips, liquids and other contaminants.

The ROBOT series is the clear choice for heavy, high-speed, fluctuating load and moment applications in aggressive environments where repeatable, maintenance-free industrial automation is required.

ROBOT 2C

For all sizes of the ROBOT series a 2C version with 2 independent carriages is also available. Each carriage is driven by its own belt. The driving head can accomodate two gearboxes, one on each side. This solution is ideal for pick & place application or loading and unloading machine.

Corrosion resistant version

ROBOT linear actuators are available with stainless steel elements, for applications in harsh environments and/or subject to frequent washes. They are constructed using extruded anodized 6060 and 6082 Anti-Corrosive Aluminum, which houses bearings, linear rails, nuts and bolts and components made of stainless steel, preventing or delaying corrosion caused by humidity experienced in the environments where the linear units are used.

Special no-deposit surface treatments are combined with a food grade lubrication system to allow use in highly sensitive applications, such as the food and pharmaceutical industries where product contamination is prohibited.

- Internal stainless steel elements
- Anodized 6060 and 6082 Anti-Corrosive Aluminum Profile
- AISI 440 stainless steel linear rails
- Lubricated with organic food grade vegetable oils

The components

Extruded profile

The anodized 6060 aluminum alloy extrusion used for the profile of ROBOT series linear units are designed and manufactured by industry experts to optimize weight while maintaining mechanical strength. The dimensional tolerances comply with EN 755-9 standards. T-slots are provided in the side and bottom faces to facilitate mounting.

Driving belt

ROBOT series linear units use steel reinforced polyurethane drive belts with AT pitch. This belt is ideal due to its high load transmission characteristics, compact size and low noise. Used in conjunction with backlash-free pulleys, smooth alternating motion can be achieved. Optimization of the maximum belt width/body dimension ratio enables the following performance characteristics to be achieved:

- High speed
- Low noise
- Low wear

The provision of guidance for the belt within the body causes it to run central on the pulley, there by ensuring long service life.

Carriage

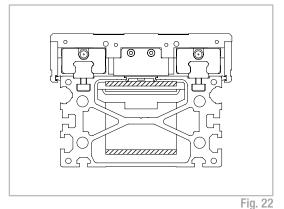
The carriage of the ROBOT series linear units are made of anodized aluminum. Each carriage has mounting holes fitted with stainless steel thread inserts. Rollon offers multiple carriages to accommodate a vast array of applications. The unique design of the carriage allows for the sealing strip to pass through it, as well as house brush seals to remove contaminates from the sealing strip.

Sealing strip

ROBOT series linear units are equipped with a polyurethane sealing strip to protect all of the internal components from dust, contaminants, and other foreign objects. The sealing strip runs the length of the body and is kept in position by micro-bearings located with in the carriage. This minimizes frictional resistance as the strip passes through the carriage while providing maximum protection.

The linear motion system

The linear motion system has been designed to meet the load capacity, speed, and maximum acceleration conditions of a wide variety of applications.


ROBOT with ball bearing guides

- Two ball bearing guides with high load capacity are mounted in two dedicated seats on the outer sides of the body.
- The carriage is assembled on four pre-loaded ball bearing blocks.
- The four ball row configuration enable the carriage to withstand loading in the four main directions.
- The four blocks have seals on both sides and, if necessary, an additional scraper can be fitted for very dusty conditions.
- The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment.
- The lubrication reservoirs (pockets) fitted on the cages considerably decreases re-lubrication frequency. Lubrication reservoirs (pockets) installed on the front of the ball bearing blocks supply the right amount of grease, thus promoting long maintenance interval.

The linear motion system described above offers:

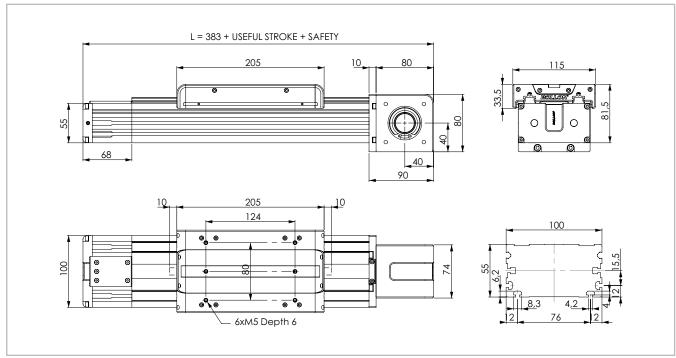
- High speed and acceleration
- High load capacity
- High bending permissible moments
- Low friction
- Long duration
- Maintenance free (dependent on application)
- Low noise

ROBOT section

The new driving head

The new driving head is designed to allow high freedom while sizing the application and mounting the gearbox on ROBOT series linear actuators. With the new head, it is possible to assembly the gearbox on either the right or the left side of the actuator by means of a standard assembly kit.

The assembly kit includes: shrink disk; adapter plate and fixing hardware; and can be ordered with the actuator. Different kits are available to accomodate gearboxes from the major brands on the market. For more information see pag. PLS-33.


The same logic is valid when mounting the shaft to connect two units in parallel.

The ROBOT-2C driving head can accomodate two gearboxes, one on each side, to control the two independent carriage. This distinctive feature requires that Rollon assembles the gearbox in-house prior the axis shipment. Please contact our Technical Department.

▶ ROBOT 100

ROBOT 100 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

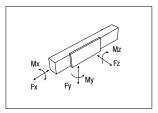
Fig. 23

Technical data

	Туре
	ROBOT 100
Max. useful stroke length [mm]	6100
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s²]	50
Type of belt	32 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	1.489
Zero travel weight [kg]	5.372
Weight for 100 mm useful stroke [kg]	0.775
Starting torque [Nm]	1.3
Moment of inertia of pulleys [g·mm²]	40004
Rail size [mm]	15 mini
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 31

¹⁾ Positioning repeatability is dependent on the type of transmission use

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	I _p [10 ⁷ mm⁴]	
R0B0T 100	0.05	0.23	0.28	
			Tab. 32	

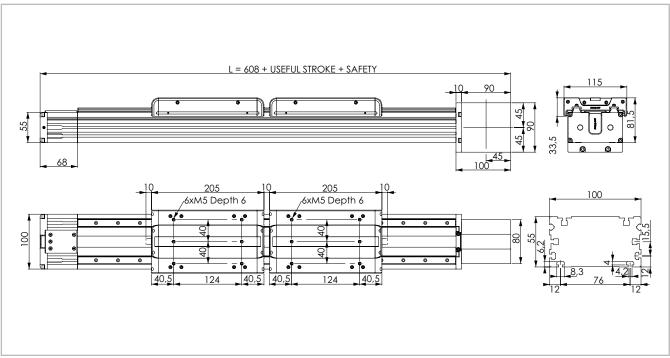
Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ROBOT 100	32 AT 5	32	0.105
			Tab. 33

Belt length (mm) = $2 \times L - 105$

Load capacity


Туре	F _x [N]		F _y [N]		F _z [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 100	1176	739	22800	21144	22800	775	1322	1322

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

F, in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-33).

ROBOT 100 2C (Double independent carriage)

ROBOT 100 2C Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

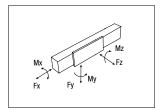
Fig. 24

Technical data

	Туре
	R0B0T 100 2C
Max. useful stroke length [mm]	5885
Max. positioning repeatability [mm]*1	± 0.05
Max. speed [m/s]	4.0
Max. acceleration [m/s²]	50
Type of belt	16 AT 5
Type of pulley	Z 23
Pulley pitch diameter [mm]	36.61
Carriage displacement per pulley turn [mm]	115
Carriage weight [kg]	1.489
Zero travel weight [kg]	9.46
Weight for 100 mm useful stroke [kg]	0.775
Starting torque [Nm]	1.3
Moment of inertia of pulleys [g·mm²]	16220
Rail size [mm]	15 mini
*1) Positioning repeatability is dependent on the type of transmission used	Tab. 35

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
ROBOT 100 2C	0.05	0.23	0.28
			Tab. 36


Driving belt

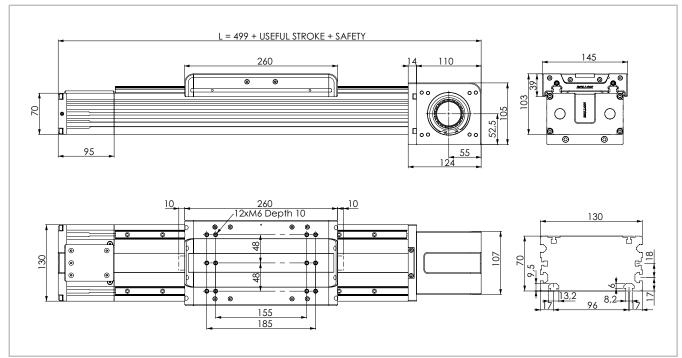
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R0B0T 100 2C	16 AT 5	16	0.05
			Tob 27

Tab. 37

Belt length (mm) = $2 \times L - 95$ Two belts for each actuator.

Load capacity


Туре	F _x [N]		F _, [N]		F _z [N]	M _× [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 100 2C	588	370	22800	21144	22800	775	1322	1322

See verification under static load and lifetime on page SL-2 and SL-3 $\,$

F, in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-33).

▶ ROBOT 130

ROBOT 130 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

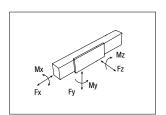
Fig. 25

Technical data

	Туре			
	ROBOT 130			
Max. useful stroke length [mm]*1	6050			
Max. positioning repeatability [mm]*2	± 0.05			
Max. speed [m/s]	5.0			
Max. acceleration [m/s²]	50			
Type of belt	50 AT 10			
ype of pulley Z 17				
Pulley pitch diameter [mm]	54.11			
Carriage displacement per pulley turn [mm]	170			
Carriage weight [kg]	3.75			
Zero travel weight [kg]	12.545			
Weight for 100 mm useful stroke [kg]	1.223			
Starting torque [Nm]	2.7			
Moment of inertia of pulleys [g·mm²]	360659			
Rail size [mm]	15			
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon joi	nts Tab. 39			

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

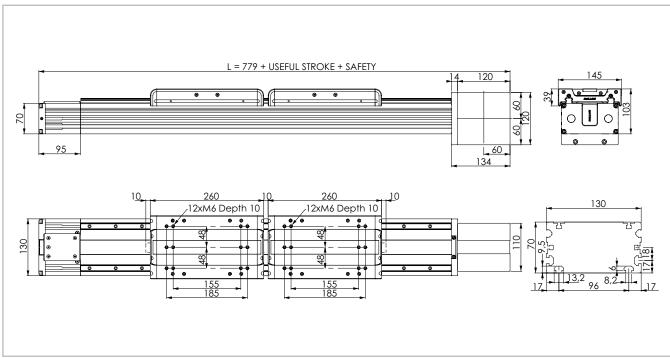

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 130	0.15	0.65	0.79
			Tab. 40

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R0B0T 130	50 AT 10	50	0.29
			Tab. 41

Belt length (mm) = $2 \times L - 80$


Load capacity

Туре	F _x [N]		F [1	: V V	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 130	3112	1725	96800	45082	96800	4646	6340	6340

See verification under static load and lifetime on page SL-2 and SL-3 F_x in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-33).

ROBOT 130 2C (Double independent carriage)

ROBOT 130 2C Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 26

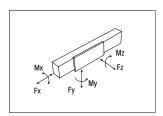
Technical data

	Туре
	ROBOT 130 2C
Max. useful stroke length [mm]*1	5780
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	25 AT 10
Type of pulley	Z 17
Pulley pitch diameter [mm]	54.11
Carriage displacement per pulley turn [mm]	170
Carriage weight [kg]	3.75
Zero travel weight [kg]	18.813
Weight for 100 mm useful stroke [kg]	1.223
Starting torque [Nm]	2.7
Moment of inertia of pulleys [g·mm²]	196200
Rail size [mm]	15
1) It is possible to obtain strokes up to 11000 mm by means of special Rollor	n joints Tab. 43

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints *2) Positioning repeatability is dependent on the type of transmission used

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	lր [10 ⁷ mm⁴]
ROBOT 130 2C	0.15	0.65	0.79
			Tah ///


Driving belt

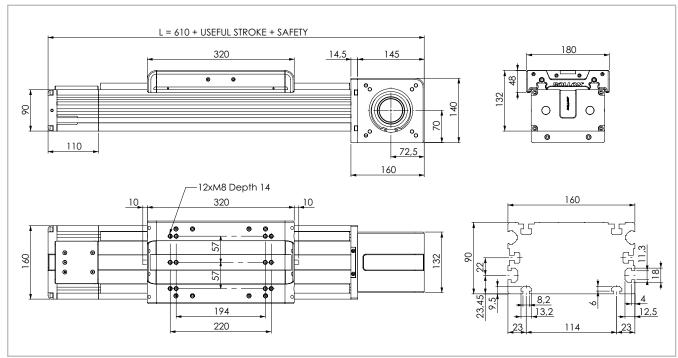
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R0B0T 130 2C	25 AT 10	25	0.16
			Tab. 45

Belt length (mm) = $2 \times L - 70$

Two belts for each actuator.

Load capacity


Туре	F [N	Ňj	F [N	: v v]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 130 2C	1556	862	96800	45082	96800	4646	6340	6340

See verification under static load and lifetime on page SL-2 and SL-3

F_x in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-33).

ROBOT 160

ROBOT 160 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

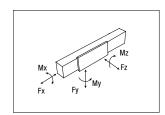
Fig. 27

Technical data

	Туре
	R0B0T 160
Max. useful stroke length [mm]*1	6000
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	70 AT 10
Type of pulley	Z 22
Pulley pitch diameter [mm]	70.03
Carriage displacement per pulley turn [mm]	220
Carriage weight [kg]	7.26
Zero travel weight [kg]	24.29
Weight for 100 mm useful stroke [kg]	1.934
Starting torque [Nm]	4.5
Moment of inertia of pulleys [g·mm²]	$1.303 \cdot 10^{6}$
Rail size [mm]	20
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon ju	oints Tab. 47

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	[10 ⁷ mm ⁴]
R0B0T 160	0.37	1.51	1.88
			Tab. 48

Driving belt

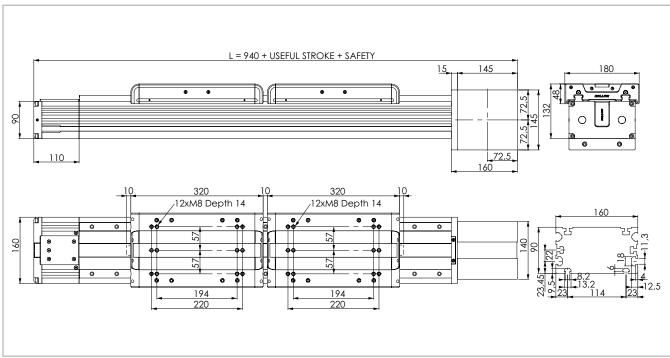
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ROBOT 160	70 AT 10	70	0.41
			Tab. 49

Belt length (mm) = $2 \times L - 120$

Load capacity

Туре	F [N	: Ň]	F [N	: Ĭj	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 160	5229	3605	153600	70798	153600	8755	12211	12211


See verification under static load and lifetime on page SL-2 and SL-3

^{*2)} Positioning repeatability is dependent on the type of transmission used

Tab. 50

ROBOT 160 2C (Double independent carriage)

ROBOT 160 2C Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

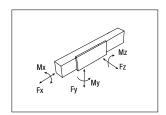
Fig. 28

Technical data

	Туре
	R0B0T 160 2C
Max. useful stroke length [mm]*1	5670
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s ²]	50
Type of belt	32 AT 10
Type of pulley	Z 19
Pulley pitch diameter [mm]	60.48
Carriage displacement per pulley turn [mm]	190
Carriage weight [kg]	7.26
Zero travel weight [kg]	32.913
Weight for 100 mm useful stroke [kg]	1.934
Starting torque [Nm]	4.5
Moment of inertia of pulleys [g·mm²]	210300
Rail size [mm]	20
) It is possible to obtain strokes up to 11000 mm by means of special Rollo	n joints Tab.

¹⁾ It is possible to obtain strokes up to 11000 mm by means of special Rollon joints

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	_p [10 ⁷ mm ⁴]
ROBOT 160 2C	0.37	1.51	1.88
			Tab. 52

Driving belt

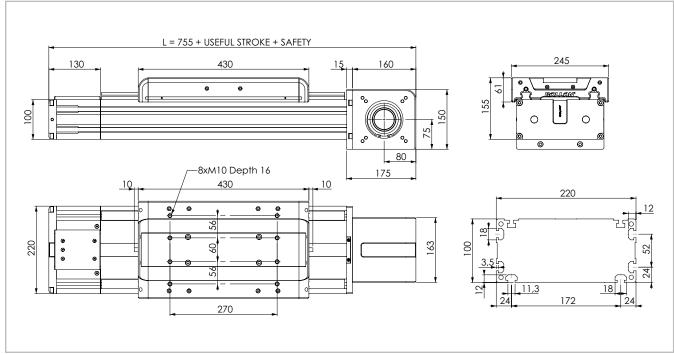
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
ROBOT 160 2C	32 AT 10	32	0.185
			Tab. 53

Belt length (mm) = $2 \times L - 120$ Two belts for each actuator.

Load capacity

Туре	F [N	: X V]	F [N	y j]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
ROBOT 160 2C	2258	1306	153600	70798	153600	8755	12211	12211


See verification under static load and lifetime on page SL-2 and SL-3 $\,$

 $^{^{\}star}2)$ Positioning repeatability is dependent on the type of transmission used

F, in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-33).

№ ROBOT 220

ROBOT 220 Dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

Fig. 29

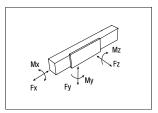
Technical data

	Туре
	R0B0T 220
Max. useful stroke length [mm]*1	5900
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	100 AT 10
Type of pulley	Z 25
Pulley pitch diameter [mm]	79.58
Carriage displacement per pulley turn [mm]	250
Carriage weight [kg]	15.925
Zero travel weight [kg]	44.722
Weight for 100 mm useful stroke [kg]	2.33
Starting torque [Nm]	6.4
Moment of inertia of each pulley [g·mm²]	$3.687 \cdot 10^{6}$
Rail size [mm]	25
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon join	nts Tab. 55

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints

Moments of inertia of the aluminum body

Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	l _p [10 ⁷ mm⁴]
R0B0T 220	0.65	3.26	3.92
			Tab. 56


Driving belt

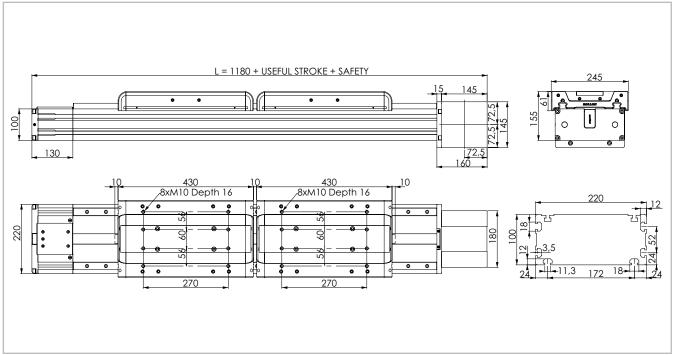
The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R0B0T 220	100 AT 10	100	0.58

Tab. 57

Belt length (mm) = $2 \times L - 120$

Load capacity


Туре	F [l	: N]	F [l	: V N]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 220	9545	6325	258800	116833	258800	22257	28986	28986

^{*2)} Positioning repeatability is dependent on the type of transmission used

Tab. 58

ROBOT 220 2C (Double independent carriage)

ROBOT 220 2C dimensions

The length of the safety stroke is provided on request according to the customer's specific requirements.

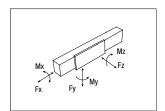
Fig. 30

Technical data

	Туре
	R0B0T 220 2C
Max. useful stroke length [mm]*1	5460
Max. positioning repeatability [mm]*2	± 0.05
Max. speed [m/s]	5.0
Max. acceleration [m/s²]	50
Type of belt	40 AT 10
Type of pulley	Z 25
Pulley pitch diameter [mm]	79.58
Carriage displacement per pulley turn [mm]	250
Carriage weight [kg]	15.925
Zero travel weight [kg]	65.807
Weight for 100 mm useful stroke [kg]	2.33
Starting torque [Nm]	6.4
Moment of inertia of each pulley [g·mm²]	2.026 · 10 ⁶
Rail size [mm]	25
*1) It is possible to obtain strokes up to 11000 mm by means of special Rollon join	nts Tab. 59

^{*1)} It is possible to obtain strokes up to 11000 mm by means of special Rollon joints

Moments of inertia of the aluminum body


Туре	l _x [10 ⁷ mm⁴]	l _y [10 ⁷ mm⁴]	Ι _ρ [10 ⁷ mm⁴]
R0B0T 220 2C	0.65	3.26	3.92
			Tab. 60

Driving belt

The driving belt is manufactured from a friction resistant polyurethane and with steel cords for high tensile stress resistance.

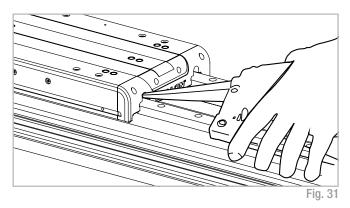
Туре	Type of belt	Belt width [mm]	Weight [kg/m]
R0B0T 220 2C	40 AT 10	40	0.23
			Tab. 61

Belt length (mm) = $2 \times L - 135$ Two belts for each actuator.

Load capacity

Туре	F [t	: X N]	F [1	: V V]	F _z [N]	M _x [Nm]	M _y [Nm]	M _z [Nm]
	Stat.	Dyn.	Stat.	Dyn	Stat.	Stat.	Stat.	Stat.
R0B0T 220 2C	3818	2530	258800	116833	258800	22257	28986	28986

See verification under static load and lifetime on page SL-2 and SL-3 $\,$


^{*2)} Positioning repeatability is dependent on the type of transmission used

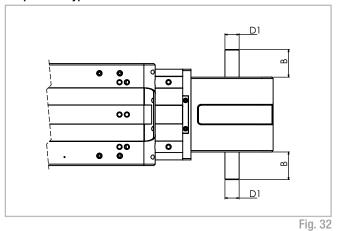
F, in the table represents the maximum capacity of the toothed belt. For the application, the limit of transmittable torque of the shrink disk must be considered too (see page PLS-33).

Lubrication

ROBOT Linear units are equipped with self lubricating linear ball guides. The ball bearing carriages are also fitted with a retention cage that eliminates "steel-steel" contact between adjacent revolving parts and prevents misalignment of these in the circuits.

Special lubrication reservoirs are mounted on the front plates of the linear blocks which continuously provide the necessary amount of grease to the ball raceways under load. These lubrication reservoirs also considerably reduce the frequency of lubrication of the module. This system guarantees a long interval between maintenances: every 5000 km or 1 year of use, based on the value reached first. If a longer service life is required or in case of high dynamic or high loaded applications please contact our offices for further verification.

Quantity of lubricant necessary for re-lubrication of each block:


Туре	Unit: [cm³]
ROBOT 100	0.7
R0B0T 130	0.7
ROBOT 160	1.4
R0B0T 220	2.4

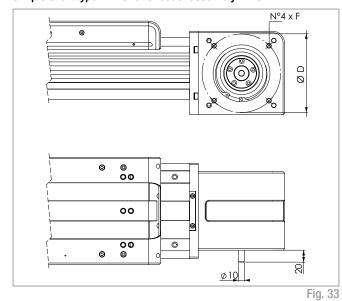
Tab. 63

- Insert grease gun in the specific grease nipples.
- Type of lubricant: Lithium soap grease of class NLGI 2.
- For specially stressed applications or difficult environemental conditions, lubrication should be carried out more frequently.
 Apply to Rollon for further advice.

Simple shaft version

Simple shaft type AS

Unit	Shaft type	В	D1
ROBOT 100	AS 15	35	15h7
R0B0T 130	AS 20	40	20h7
ROBOT 160	AS 25	50	25h7
R0B0T 220	AS 25	50	25h7


Tab. 64

Position of the simple shaft can be to the right, left, or both sides of the drive head.

Unit	Shaft type	В	D1	AS assembly kit code
ROBOT 100	AS 15	35	15H7	G002695
R0B0T 130	AS 20	40	20H7	G002696
R0B0T 160	AS 25	50	25H7	G000649
ROBOT 220	AS 25	50	25H7	G000649

Tab. 65

Simple shaft type AE 10 for encoder assembly + AS

Unit	Code kit AE	ØD	F
R0B0T 100	G002746	75	M6
R0B0T 130	G002745	100	M6
R0B0T 160	G002370	130	M8
R0B0T 220	G002370	130	M8

Tab. 66

Position of the simple shafts for encoder assembly to the right or to the left on the driving head.

Hollow shafts

AC hollow shaft type

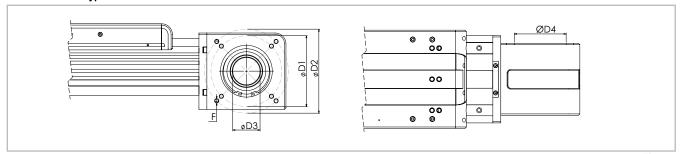
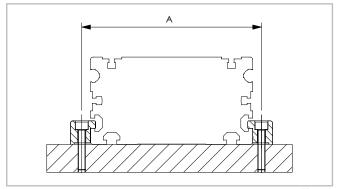


Fig. 34

Unit mm

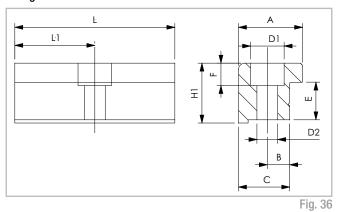
Appliable to unit	Shaft type	D1	D2	D3	D4	F
R0B0T 100	AC26	75	-	26 H8	47	M5
R0B0T 130	AC41	100	72x92	41 H8	72	M6
R0B0T 160	AC50	130	154	50 H8	95	M8
R0B0T 220	AC50	130	154	50 H8	95	M8


Tab. 67

Accessories

Fixing by brackets

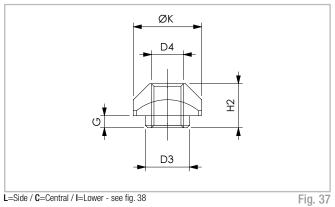
The linear motion systems used for the Rollon series ROBOT linear units enable support of loads in any direction. They can therefore be installed in any position.


To install the units, we recommend the use of the dedicated T-slots in the extruded bodies as shown below.

Unit	A (mm)
R0B0T 100	112
R0B0T 130	144
R0B0T 160	180
R0B0T 220	240
	Tab. 68

Fig. 35

Fixing brackets


Anodised aluminum block for fixing the linear units through the side T-slots of the body.

Dimensions (mm)

Unit	А	В	С	E	F	D1	D2	H1	L	Lt	Code
ROBOT 100	20	6	16	10	5.5	9.5	5.3	14	35	17.5	1000958
ROBOT 130	20	7	16	12.7	7	10.5	6.5	18.7	50	25	1001061
ROBOT 160	36.5	10	31	18.5	10.5	16.5	10.5	28.5	100	50	1001233
R0B0T 220	36.5	10	31	18.5	10.5	16.5	10.5	28.5	100	50	1001233

Tab. 69

T-nuts

Steel nuts to be used in the slots of the body.

Fixing by T-nuts

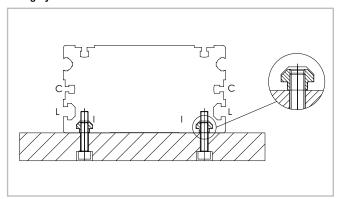
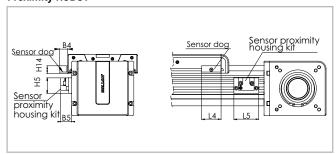


Fig. 38

Warning:


Do not fix the linear units through the drive ends.

Dimensions (mm)

Unit		D3	D4	G	H2	K	Code
R0B0T 100	L-I	-	M4	-	3.4	8	1001046
R0B0T 130	С	-	M3	-	4	6	1001097
R0B0T 130	L-I	8	M6	3.3	8.3	13	1000043
ROBOT 160	С	-	M6	-	5.8	13	1000910
R0B0T 160	I	8	M6	3.3	8.3	13	1000043
R0B0T 160	L	11	M8	2.8	10.8	17	1000932
R0B0T 220	L-I	11	M8	2.8	10.8	17	1000932

PLS-30 Tab. 70

Proximity ROBOT

Sensor dog

the body slots.

Sensor proximity housing kit

L-shaped bracket in zinc-plated iron, mounted on the carriage and used for proximity switch operations.

Red anodized aluminum sensor holder, equipped with T-nuts for fixing into

Fig. 39

Dimensions (mm)

Unit	В4	B5	L4	L5	H4	Н5	For proximity	Sensor dog code	Sensor proximity housing kit code
R0B0T 100	9.5	20	25	45	12	25	Ø 8	G000268	G000092
R0B0T 130	21	28	50	60	20	40	Ø 12	G000269	G000126
R0B0T 160	21	28	50	64	20	40	Ø 12	G000269	G000123
R0B0T 220	21	28	50	70	20	40	Ø 12	G000269	G000207

Tab. 71

Warning:

If a bellow is used, it is not possible to assemble the proximity switch holders to the aluminum body.

Protections

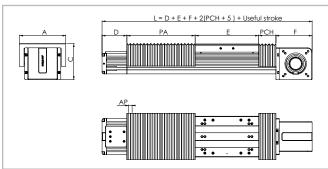


Fig. 40

Standard protections

The Rollon series ROBOT linear units are equipped with a polyurethane sealing strip to protect all parts inside the body against dust and foreign matter. The sealing strip runs the length of the body and is kept in position by micro-bearings located within the carriage. This ensures very low frictional resistance as it passes through the carriage.

Dimensions (mm)

Unit	А	С	D	E	F
R0B0T 130	174	103	95	230	135
ROBOT 160	204	131.5	110	280	160
ROBOT 220	275	149.5	130	380	160

Tab. 72

Protection of ball bearing guides

The four ball bearing blocks have seals on both sides and, where necessary, an additional scraper can be fitted for very dusty conditions.

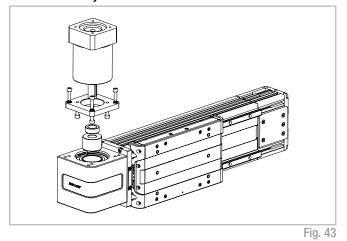
Special protection

To use these linear units in very critical environments, they can be fitted with a bellows system in addition to the standard protection. The bellows is fixed to the carriage and the ends of the body with Velcro tape for easy assembly and disassembly.

The total length (L) of the linear unit will vary: See Fig. 40.

Standard material: Thermally welded nylon coated with polyurethane **Materials on demand:** Nylon coated with PVC, fiberglass, stainless steel **Warning:** The use of bellows does not allow the assembly of the proximity switch holders to the aluminum body.

Assembly kits


Fig. 42

For the direct assembly of Robot linear units on other types of actuators Rollon offers dedicated assembly kits (brackets) in order to fix those brackets the ends of the actuator must be free of rails. The table below gives the codes of the assembly kit. The allowed combination of assembly as well as the length without rails at each end.

	Kit	Code	X No rail at each end (mm)
	ROBOT 100 - ELM 65	G000205	75
	R0B0T 100 - R0B0T 130	G000201*	155
	ROBOT 100 - ECO 80	G000203	90
	ROBOT 100 - E-SMART 50	G000642	60
	ROBOT 130 - ELM 65	G000196	75
	ROBOT 130 - ELM 80	G000195	90
	R0B0T 130 - R0B0T 130	G000197*	155
	ROBOT 130 - ROBOT 160	G000197*	190
	ROBOT 160 - ELM 80	G000204	90
	ROBOT 160 - ELM 110	G000452	120
	ROBOT 160 - ROBOT 160	G000202*	190
	R0B0T 160 - R0B0T 220	G000202*	255
1-	ROBOT 220 - ELM 110	G000199	120

 $[\]ensuremath{^{\star}}\xspace$ Additional fixing holes are requested on the robot plate

Gearbox assembly kit

Codes on the table below refer to the gearbox assembly kit. The kit includes: shrink disk; adapter plate; fixing hardware.

Single shrink disc

Fig. 44

Codes on the table below refer to a shink disc ordered as single element.

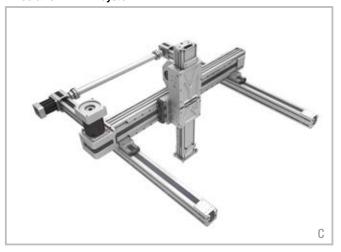
Unit type	Gearbox type (not included)	Kit Code	Unit type	Hollow shaft [mm]	Shrink disc dxD [mm]	Transmittable torque* [Nm]	Shrink disc code
ROBOT	MP060	G000566	R0B0T 100	26	14x26	36	6005740
100	LC050; PE2; NP005S	G001444			16x41	101	6005733
	P3	G000824	R0B0T 130	41	19x41	150	6005734
	MP080	G000826	NODOT 130	41	22x41	174	6005735
	LC090; MPV01; NP025S; PE4	G000827			25x41	198	6005736
ROBOT	MP105	G000830			22x50	286	6005730
130	PE3; NP015S; LC070	G001078	ROBOT 160 ROBOT 220	50	25x50	324	6005731
	SP075; PLN090	G000859			32x50	415	6005732
	SP060; PLN070	G000829	* Transmittable torque For the application, the			capacity of the shrink	disk. Tab. 75
	SW040	G000866					


Unit type	Gearbox type (not included)	Kit Code
ROBOT	MP060	G000566
100	LC050; PE2; NP005S	G001444
	P3	G000824
	MP080	G000826
	LC090; MPV01; NP025S; PE4	G000827
ROBOT	MP105	G000830
130	PE3; NP015S; LC070	G001078
	SP075; PLN090	G000859
	SP060; PLN070	G000829
	SW040	G000866
	AB115	G000481
	MP130	G000482
	LC120; MPV02; NP035S; PE5; AE120	G000483
ROBOT 160	LC090, NP025S, PE, NP025S	G000525
	SP+075, PLN090, P4, VRS075, AF075A	G000526
	PSF5; NPS35; SP+100	G000657
	MP105	G000527
	AB115	G000481
	MP130	G000482
	LC120; MPV02; NP035S; PE5; AE120	G000483
ROBOT 220	LC090, NP025S, PE4, NP025S	G000525
	SP+075, PLN090, P4, VRS075, AF075A	G000526
	PSF5; NPS35; SP+100	G000657
	MP105	G000527

Tab. 74

Multiaxis systems //

Rollon now offers a set of fittings including brackets and cross plates, to enable multiaxis units to be built. The SC series is also pre-engineered to facilitate direct connection with the units of the ROBOT series. In addition to standard elements, Rollon also provides plates for special applications.

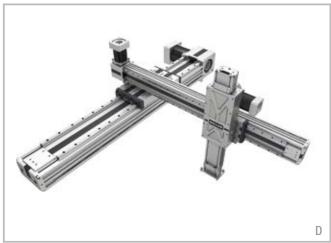

Two axis - X-Y system

A - Linear units: X Axis - 2 ELM 80, Y Axis - 1 ROBOT 160
Connection part: 2 kits of fixing brackets for ROBOT 160 on to the carrieages of ELM 80.

Application examples:

Three axis - 2X-Y-Z system

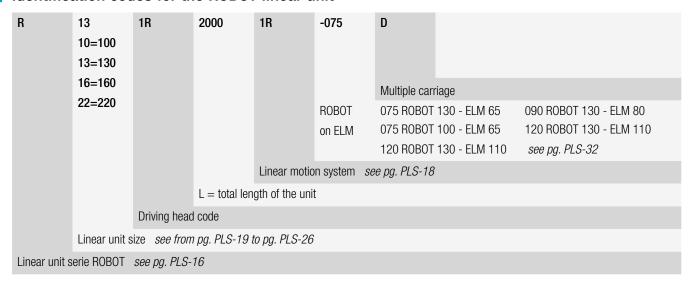
C - Linear units: X Axis - 2 ELM 65, Y Axis - 1 ROBOT 130, Z Axis - 1 SC 100


Connection part: 2 kits of fixing brackets for ROBOT 130 on to the carrieages of ELM 65. The SC 100 unit is directly assembled on to the ROBOT 130 unit without further elements.

Two axis - Y-Z system

B - Linear Axis: Y Axis - ROBOT 220, Z Axis - SC 160
 Connection part: None
 The SC 160 unit is directly assembled on to the ROBOT 220 unit without further elements

Three axis - X-Y-Z system



D - Linear units: X axis - ROBOT 220, Y axis - ROBOT 130, Z axis - SC 100

Connection part: 1 kit of fixing brackets for ROBOT 130 unit to the carriage of the ROBOT 220 unit. The SC 100 unit is directly assembled on to the ROBOT 130 unit without further elements.

Ordering key / ~

Identification codes for the ROBOT linear unit

In order to create identification codes for Actuator Line, you can visit: http://configureactuator.rollon.com

Service life / ~

Service life

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km.

The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

$$L_{km} = 100 \text{ km} \cdot (\frac{\text{Fz-dyn}}{P_{eq}} \cdot \frac{1}{f_i})^3$$

$$\begin{split} L_{km} &= \text{theoretical service life (km)} \\ \text{Fz-dyn} &= \text{dynamic load rating (N)} \\ P_{eq} &= \text{acting equivalent load (N)} \\ f_i &= \text{service factor (see tab. 2)} \end{split}$$

Fig. 1

The effective equivalent load $P_{\rm eq}$ is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

For SP types

$$P_{eq} = P_{fy} + P_{fz} + (\frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 2

Belt safety factor referred to the dynamic F_{χ}

For CI and CE types

$$P_{eq} = P_{fy} + (\frac{P_{fz}}{F_{z}} + \frac{M_{1}}{M_{x}} + \frac{M_{2}}{M_{y}} + \frac{M_{3}}{M_{z}}) \cdot F_{y}$$

Fig. 3

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.

Impact and vibrations	Speed / acceleration	Orietation	Safety Factor
No impacts	Low	horizontal	1.4
and/or vibrations	LOW	vertical	1.8
Light impacts	Medium	horizontal	1.7
and/or vibrations	MEGIUIII	vertical	2.2
Strong impacts	High	horizontal	2.2
and/or vibrations	High	vertical	3
			Tob 1

Tab. 1

Service factor f

$\mathbf{f_i}$	
no shocks or vibrations, smooth and low-frequency changes in direction; ($\alpha < 5 \text{m/s}^2$) clean operating conditions; low speeds (<1 m/s)	1.5 - 2
Slight vibrations; medium speeds; (1-2 m/s) and medium-high frequency of the changes in direction (5m/s 2 < α < 10 m/s 2)	2 - 3
Shocks and vibrations; high speeds (>2 m/s) and high-frequency changes in direction; (α > 10m/s²) high contamination, very short stroke	> 3

Tab. 2

Speedy Rail A Lifetime

The rated lifetime for Speedy Rail A is: SAR 80.000 km, SAB 50.000 km.

Service life Uniline

Service life

Calculation of the service life

The dynamic load rating C is a conventional quantity used for calculating the service life. This load corresponds to a nominal service life of 100 km. The corresponding values for each liner unit are listed in Table 45 shown

below. The calculated service life, dynamic load rating and equivalent load are linked by the following formula:

$$L_{km} = 100 \text{ km} \cdot (\frac{C}{P} \cdot \frac{f_c}{f_i} \cdot f_h)^3$$

 L_{km} = theoretical service life (km) C = dynamic load rating (N)

P = acting equivalent load (N)

 f_i = service factor (see tab. 5)

= contact factor (see tab. 6)

f_b = stroke factor (see fig. 13)

Fig. 4

The effective equivalent load P is the sum of the forces and moments acting simultaneously on a slider. If these different load components are known, P is obtained from the following equation:

$$P = P_{fy} + (\frac{P_{fz}}{F_Z} + \frac{M_1}{M_x} + \frac{M_2}{M_y} + \frac{M_3}{M_z}) \cdot F_y$$

Fig. 5

The external constants are assumed to be constant over time. Short-term loads that do not exceed the maximum load ratings have no relevant effect on the service life and can therefore be neglected in the calculation.

Service factor f,

f_{i}	
No shocks or vibrations, smooth and low-frequency changes in direction; clean operating conditions; low speeds (<1 m/s)	1 - 1.5
Slight vibrations; medium speeds; (1-2,5 m/s) and medium-high frequency of the changes in direction	1.5 - 2
Shocks and vibrations; high speeds (>2.5 m/s) and high-frequency changes in direction; high contamination	2 - 3.5

Tab. 3

Contact factor f

1
0.8
0.8

Tab. 4

Stroke factor f_h

The stroke factor f_h accounts for the higher stress on the raceways and rollers when short strokes are carried out at the same total run distance. The following diagram shows the corresponding values (for strokes above 1 m, f_h remains 1):

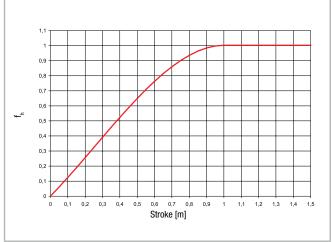


Fig. 6

Determination of the motor torque

The torque C_m required at the drive head of the linear axis is calculated by the following formula:

$$C_m = C_v + (F \cdot \frac{D_p}{2})$$

 C_m = torque of the motor (Nm)

 $C_v = \text{starting torque (Nm)}$

F = force acting on the toothed belt (N)

 $D_n = pitch diameter of pulley (m)$

Fig. 7

Calculation formulae

Moments $\mathbf{M}_{_{\boldsymbol{v}}}$ and $\mathbf{M}_{_{\boldsymbol{z}}}$ for linear units with long slider plate

The allowed loads for the moments M_y and M_z depend on the length of the slider plate. The allowed moments M_{zn} and M_{yn} for each slider plate length are calculated by the following formulae:

$$S_{n} = S_{min} + n \cdot \Delta S$$

$$M_{zn} = \left(1 + \frac{S_{n} - S_{min}}{K}\right) \cdot M_{z \, min}$$

$$M_{yn} = \left(1 + \frac{S_{n} - S_{min}}{K}\right) \cdot M_{y \, min}$$

 M_{zn} = allowed moment (Nm)

 $M_{z min} = minimum values (Nm)$

 M_{yn} = allowed moment (Nm)

 $M_{v min} = minimum values (Nm)$

 S_n = length of the slider plate (mm)

 S_{min} = minimum length of the slider plate (mm)

 ΔS = factor of the change in slider length

K = constant

Fig. 8

Туре	M _{y min}	M _{z min}	S _{min}	ΔS	К
	[Nm]	[Nm]	[mm]		
A40L	22	61	240		74
A55L	82	239	310		110
A75L	287	852	440		155
C55L	213	39	310		130
C75L	674	116	440	10	155
E55L	165	239	310		110
E75L	575	852	440		155
ED75L (M _z)	1174	852	440		155
ED75L (M _y)	1174	852	440		270

Tab. 5

Moments $\mathbf{M}_{_{\mathbf{V}}}$ and $\mathbf{M}_{_{\mathbf{Z}}}$ for linear units with two slider plates

The allowed loads for the moments M_y and M_z are related to the value of the distance between the centers of the sliders. The allowed moments M_{yn} and M_{zn} for each distance between the centers of the sliders are calculated by the following formulae:

$$L_n = L_{min} + n \cdot \Delta L$$

$$M_{_{\boldsymbol{y}}} = (\frac{L_{_{\boldsymbol{n}}}}{L_{_{\boldsymbol{min}}}}) \cdot M_{_{\boldsymbol{y} \, min}}$$

$$M_z = (\frac{L_n}{L_{min}}) \cdot M_{z \, min}$$

 $M_v = allowed moment (Nm)$

 M_{z} = allowed moment (Nm)

 $M_{v min} = minimum values (Nm)$

 $M_{z min} = minimum values (Nm)$

 L_n = distance between the centers of the sliders (mm)

 L_{min} = minimum value for the distance between the centers of the sliders (mm)

 ΔL = factor of the change in slider length

Fig. 9

Туре	M _{y min}	M _{z min}	L _{min}	ΔL
	[Nm]	[Nm]	[mm]	
A40D	70	193	235	5
A55D	225	652	300	5
A75D	771	2288	416	8
C55D	492	90	300	5
C75D	1809	312	416	8
E55D	450	652	300	5
E75D	1543	2288	416	8
ED75D	3619	2288	416	8

Tab. 6

Warnings and legal notes

Before incorporating the partly completed machinery, we recommend consulting this chapter carefully, in addition to the assembly manual supplied with the individual modules. The information contained in this chapter and in the manuals for the individual modules, is provided by highly qualified and certified personnel, possessing adequate competence in incorporating the partly completed machinery.

Precaution in installation and handling operations. Significantly heavy equipment.

When handling the axis or system of axes, always make sure that the support or anchoring surfaces do not leave room for bending.

In order to stabilize the axis or system of axes, before handling it is mandatory to securely block the mobile parts. When moving axes with vertical translation (Z AXES) or combination systems (horizontal X and/or more than one vertical Z), it is mandatory to use the vertical movement to put all of the axes at the corresponding lower limit switch.

Do not overload. Do not subject to torsion stress.

Do not leave exposed to atmospheric agents.

Before mounting the motor on the gearbox, it is advisable to perform a pre-test of the motor itself, without connection to the gear unit. The testing of this component was not carried out by the manufacturer of the machine. It will therefore be the responsibility of the customer of Rollon to perform the testing of the same, in order to verify its correct operation.

The manufacturer cannot be considered responsible for any consequences derived from improper use or any use other than the purpose the axis or system of axes was designed for, or derived from failure to comply, during incorporation phases, with the rules of Good Technique and with what is indicated in this manual.

Avoid damage. Do not operate with inadequate tools

Warning: moving parts. Do not leave objectson the axis

Special installations: check the depth of the threads on moving elements

Make sure that the system has been installed on a level floor surface.

In use, accurately comply with the specific performance values declared in the catalog or, in particular cases, the load and dynamic performance characteristics requested in the phase prior to design.

For modules or parts of modular systems with vertical movement (Z axis), it is mandatory to mount self-braking motors to neutralize the risk of the axis dropping.

The images in this manual are to be considered merely an indication and not binding; therefore, the supply received could be different from the images contained in this manual, and Rollon S.p.A has deemed it useful to insert only one example.

Systems supplied by Rollon S.p.A. were not designed/envisaged to operate in ATEX environments.

Residual risks

- Mechanical risks due to the presence of moving elements (X, Y axes).
- Risk of fire resulting from the flammability of the belts used on the axes, for temperatures in excess of 250 °C in contact with the flame.
- The risk of the Z axis dropping during handling and installation operations on the partly completed machinery, before commissioning.
- Risk of the Z axis dropping during maintenance operations in the case

of a drop in the electrical power supply voltage.

- Crushing hazard near moving parts with divergent and convergent motion.
- Shearing hazard near moving parts with divergent and convergent motion.
- Cutting and abrasion hazards.

Basic components

The Partly Completed Machinery shown in this catalog is to be considered a mere supply of simple Cartesian axes and their accessories agreed when the contract is stipulated with the client. The following are therefore to be considered excluded from the contract:

- 1. Assembly on the client's premises (direct or final)
- 2. Commissioning on the client's premises (direct or final)
- 3. Testing on the client's premises (direct or final)
 It is therefore understood that the aforementioned operations in points 1.,2., and 3. are not chargeable to Rollon.

Rollon is the supplier of Partly Completed Machinery, the (direct or final) client is responsible for testing and safely checking all equipment which, by definition, cannot be theoretically tested or checked at our facilities where the only movement possible is manual movement (for example: motors or reduction gears, cartesian axes movements that are not manually operated, safety brakes, stopper cylinders, mechanical or induction sensors, decelerators, mechanical limit switches, pneumatic cylinders, etc.). The partly completed machine must not be commissioned until the final machine, in which it is to be incorporated, has been declared compliant, if necessary, with the instructions in Machinery Directive 2006/42/CE.

Instructions of an environmental nature

Rollon operates with respect for the environment, in order to limit environmental impact. The following is a list of some instructions of an environmental nature for correct management of our supplies. Our products are mainly composed of:

Material	Details of the supply
Alluminum alloys	Profiles, pleates, various details
Steel with various composition	Screws, racks and pinions, and rails
Plastic	PA6 – Chains PVC – Covers and sliding block scrapers
Rubber of various types	Plugs, seals
Lubrification of various types	Used for the lubrication of sliding rails and bearings
Rust proof protectione	Rust proof protection oil
Wood, polyethylene, cardboard	Transport packaging

At the end of the product's life cycle, it is therfore possible to recover the various elements, in compliance with current regulations on waste issues.

Safety warnings for handling and transport

- The manufacturer has paid the utmost attention to packaging to minimize risks related to shipping, handling and transport.
- Transport can be facilitated by shipping certain components dismantled and appropriately protected and packaged.
- Handling (loading and unloading) must be carried out in compliance with information directly provided on the machine, on the packing and in the user manuals.
- Personnel authorized to lift and handle the machine and its components shall possess acquired and acknowledged skills and experience in the specific sector, besides having full control of the lifting devices used.
- During transport and/or storage, temperature shall remain within the allowed limits to avoid irreversible damage to electric and electronic components.
- Handling and transport must be carried out with vehicles presenting adequate loading capacity, and the machines shall be anchored to the established points indicated on the axes.
- DO NOT attempt to bypass handling methods and the established lifting points in any way.
- During handling and if required by the conditions, make use of one or more assistants to receive adequate warnings.
- If the machine has to be moved with vehicles, ensure that they are adequate for the purpose, and perform loading and unloading without risks for the operator and for people directly involved in the process.
- Before transferring the device onto the vehicle, ensure that both the
 machine and its components are adequately secured, and that their
 profile does not exceed the maximum bulk allowed. Place the necessary
 warning signs, if necessary.
- DO NOT perform handling with an inadequate visual field and when there are obstacles along the route to the final location.
- DO NOT allow people to either transit or linger within the range of action when lifting and handling loads.
- Download the axes just near the established location and store them in an environment protected against atmospheric agents.
- Failure to comply with the information provided might entail risks for the safety and health of people, and can cause economic loss.
- The Installation Manager must have the project to organize and monitor all operative phases.
- The Installation Manager shall ensure that the lifting devices and equipment defined during the contract phase are available.
- The Manager of the established location and the Installation Manager shall implement a "safety plan" in compliance with the legislation in force for the workplace.
- The "safety plan" shall take into account all surrounding work-related

- activities and the perimeter spaces indicated in the project for the es tablished location.
- Mark and delimit the established location to prevent unauthorized personnel from accessing the installation area.
- The installation site must have adequate environmental conditions (lighting, ventilation, etc.).
- Installation site temperature must be within the maximum and minimum range allowed.
- Ensure that the installation site is protected against atmospheric agents, does not contain corrosive substances and is free of the risk of explosion and/or fire.
- Installation in environments presenting a risk of explosion and/or of fire must ONLY be carried out if the machine has been DECLARED COMPLIANT for such use.
- Check that the established location has been correctly fitted out, as defined during the contract phase and based on indications in the relative project.
- The established location must be fitted out in advance to carry out complete installation in compliance with the defined methods and schedule.

Note

- Evaluate in advance whether the machine must interact with other production units, and that integration can be implemented correctly, in compliance with standards and without risks.
- The manager shall assign installation and assembly interventions ONLY to authorized technicians with acknowledged know-how.
- State of the art connections to power sources (electric, pneumatic, etc.)
 must be ensured, in compliance with relevant regulatory and legislative requirements.
- "State of the art" connection, alignment and leveling are essential to avoid additional interventions and to ensure correct machine function.
- Upon completion of the connections, run a general check to ascertain that all interventions have been correctly carried out and compliance with requirements.
- Failure to comply with the information provided might entail risks for the safety and health of people, and can cause economic loss.

Transport

- Transport, also based on the final destination, can be done with different vehicles.
- Perform transport with suitable devices that have adequate loading capacity.
- Ensure that the machine and its components are adequately anchored to the vehicle.

Handling and lifting

- Correctly connect the lifting devices to the established points on the packages and/or on the dismantled parts.
- Before handling, read the instructions, especially safety instructions, provided in the installation manual, on the packages and/or on the dismantled parts.
- DO NOT attempt, in any way, to bypass handling methods and the established lifting, moving and handling points of each package and/or dismantled part.
- Slowly lift the package to the minimum necessary height and move it with the utmost caution to avoid dangerous oscillations.
- DO NOT perform handling with an inadequate visual field and when there are obstacles along the route to reach the final location.
- DO NOT allow people to either transit or linger within the range of action when lifting and handling loads.
- Do not stack packages to avoid damaging them, and reduce the risk of sudden and dangerous movements.
- In case of prolonged storage, regularly ensure that there are no variations in the storage conditions of the packages.

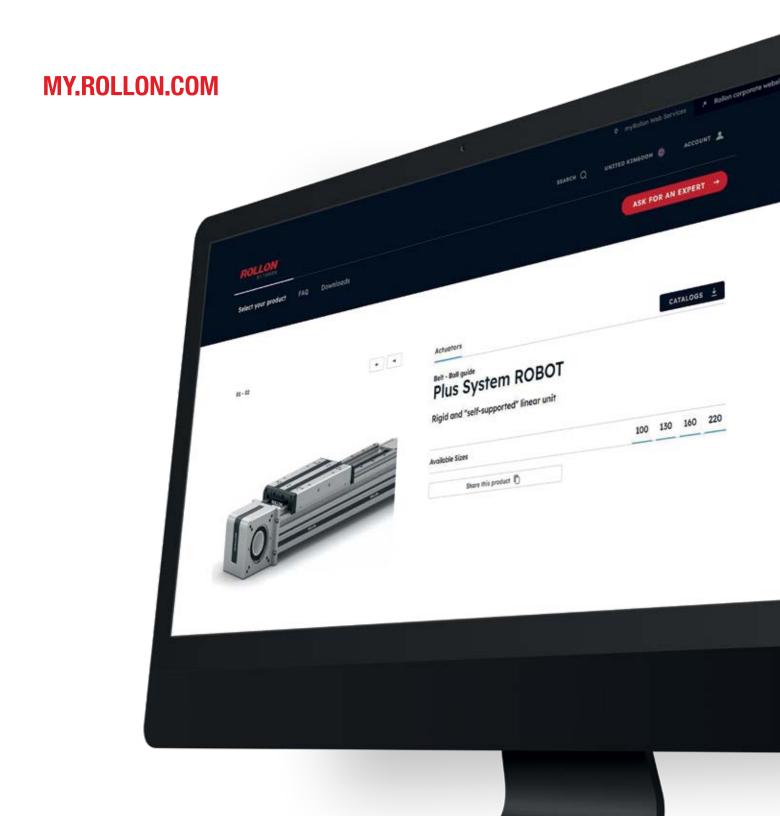
Check axis integrity after shipment

Every shipment is accompanied by a document ("Packing list") with the list and description of the axes.

- Upon receipt check that the material received corresponds to specifications in the delivery note.
- Check that packaging is perfectly intact and, for shipments without packaging, check that each axis is intact.
- In case of damages or missing parts, contact the manufacturer to define the relevant procedures.

Data sheet	V
------------	----------

General data:	Date: Inquiry N°:
Address:	Contact:
Company:	Zip Code:
Phone:	Fax:
E-Mail:	


Technical data:

				X axis	Y axis	Z axis
Useful stroke (Including safety overtravel)		S	[mm]			
Load to be translated	over travely	Р	[kg]			
Location of Load in the	X-Direction	LxP	[mm]			
	Y-Direction	LyP	[mm]			
	Z-Direction	LzP	[mm]			
Additional force	Direction (+/-)	Fx (Fy, Fz)	[N]			
Position of force	X-Direction	Lx Fx (Fy, Fz)	[mm]			
	Y-Direction	Ly Fx (Fy, Fz)	[mm]			
	Z-Direction	Lz Fx (Fy, Fz)	[mm]			
Assembly position (Horizontal/N	Assembly position (Horizontal/Vertical/Transversal					
Max. speed		V	[m/s]			
Max. acceleration		a	[m/s ²]			
Positioning repeatability		Δs	[mm]			
Required life		L	yrs			

Attention: Please enclose drawing, sketches and sheet of the duty cycle

A NEW DIGITAL EXPERIENCE SURROUNDED BY ROLLON EXPERTS WHERE YOU CAN EASILY SELECT THE PRODUCT YOU NEED.

EUROPE

ROLLON S.p.A. - ITALY

V

Via Trieste 26 I-20871 Vimercate (MB) Phone: (+39) 039 62 59 1

www.rollon.com - infocom@rollon.com

ROLLON Ltd - UK (Rep. Office)

The Works 6 West Street Olney Buckinghamshire, United Kingdom, MK46 5 HR

Phone: +44 (0) 1234964024

www.rollon.uk.com - ukandireland@rollon.com

AMERICA

ROLLON Corporation - USA

101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492

www.rollon.com - info@rolloncorp.com

ASIA

ROLLON Ltd - CHINA

No. 1155 Pang Jin Road, China, Suzhou, 215200 Phone: +86 0512 6392 1625

www.rollon.cn.com - info@rollon.cn.com

Consult the other ranges of products

ROLLON GmbH - GERMANY

Bonner Strasse 317-319 D-40589 Düsseldorf

Phone: (+49) 211 95 747 0 www.rollon.de - info@rollon.de

ROLLON S.A.R.L. - FRANCE

Les Jardins d'Eole, 2 allée des Séquoias F-69760 Limonest

Phone: (+33) (0) 4 74 71 93 30 www.rollon.fr - infocom@rollon.fr

ROLLON - SOUTH AMERICA

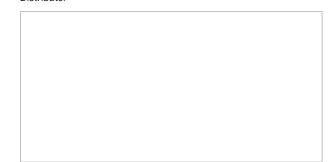
101 Bilby Road. Suite B Hackettstown, NJ 07840 Phone: (+1) 973 300 5492

www.rollon.com - info@rolloncorp.com

ROLLON India Pvt. Ltd. - INDIA

39-42, Electronic City, Phase-I, Hosur Road, Bangalore-560100 www.rollonindia.in - info@rollonindia.in

ROLLON - JAPAN


〒252-0131

神奈川県相模原市緑区西橋本1-21-4

橋本屋ビル 電話番号: +81 (0) 42 703 4101

www.rollon.jp - info@rollon.jp

Distributor

All addresses of our global sales partners can also be found at www.rollon.com

The content of this document and its use are subject to the general terms of sale of ROLLON available on the web site www.rollon.com Changes and errors expected. The text and images may be used only with our permission.